Step-by-Step Guidelines for Propensity Score Weighting with Two Groups

Beth Ann Griffin

Four key steps

- 1) Choose the primary treatment effect of interest (ATE or ATT)
- 2) Estimate propensity score (ps) weights
- 3) Evaluate the quality of the ps weights
- 4) Estimate the treatment effect

Case study

- Aim: To estimate the causal effect of MET/CBT5 versus "usual care"
 - Data from 2 SAMSHA CSAT discretionary grants

MET/CBT5

- Longitudinal, observational
- 37 sites from EAT study
- N = 2459

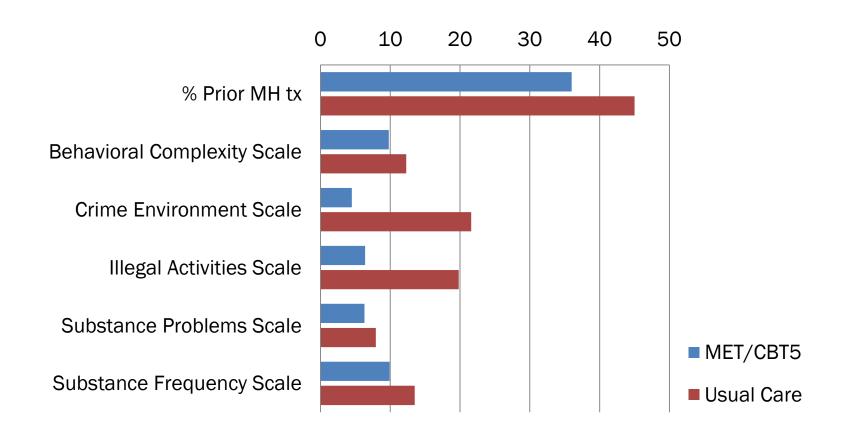
"Usual Care"

- Longitudinal, observational
- 4 sites from ATM study
- N = 444

Case study

- Aim: To estimate the causal effect of MET/CBT5 versus "usual care"
 - Data from 2 SAMSHA CSAT discretionary grants

MET/CBT5


- Longitudinal, observational
- 37 sites from EAT study
- N = 2459

"Usual Care"

- Longitudinal, observational
- 4 sites from ATM study
- N = 444

All youth assessed with the GAIN at baseline, 6 months, and 12 months

Selection exists: Various meaningful ways in which the groups differ

Step 1: Choose the primary treatment effect (ATE or ATT)

- Today, we chose to focus on estimating an ATT-type estimand
 - Want to draw inferences about the effect of treatment for individuals in the control condition (so really ATC)
 - In this case, we can just flip treatment indicator so 1 = usual care and 0 = MET/CBT5 to get the needed ATT estimand for the control group
- Why?
 - Youth in the community are different from those targeted to receive MET/CBT5 in the EAT study
 - Thus, the policy question we want to address is

How would youth like those receiving "usual care" in the community have fared had they received MET/CBT5?

Step 2: Estimate the ps weights

- Only 1 command needed for this step
- Binary treatment command in TWANG currently available in R, SAS and STATA
- Also have a user-friendly Shiny app

STATA CODE SLIDES

- \cdot use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///
- ntrees(5000) stopmethod(es.max) estimand(ATT) ///
- rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
- objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
 plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies name of dataset

- use aod_big,clear
 dataset
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
 - objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
- plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies name of treatment variable (for ATT, it should = targeted group)

Stata

- use and_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) ///
rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
plotname(binary_twang_att.pdf)

- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds
 bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) // rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///

objpath(C:\Users\sliu002\Desktop\twang\ Specifies list of

- plotname(binary_twang_att.pdf)
- · balance, unweighted weighted

pretreatment covariates to balance on

save subdata_twogrp_att_wgts,replace

Stata

Specifies categorical variable race4g as i.race4g

- \cdot use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) ///
rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
plotname(binary_twang_att.pdf)

- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) ///

- rcmd(:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
- objpan(C:\Users\sliu002\Desktop\twang\webinar twang) ///
- plotname(binary_twang_att.pdf)
- · balane, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies the maximum number of iterations used by GBM. Should be large (5000 to 10000)

use aod_big,clear

 • ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) ///

- rcmd(C:\Program Files\R\R-3.0.\bin\Rscript.exe) ///
- objpath(C:\Users\sliu002\Desktop twang\webinar twang) ///
- plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies the criteria for choosing the optimal number of iterations. Available choices include mean or max ES and mean or max KS statistics

use aod_big,clear

 ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///

objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///

- plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies primary estimand of interest (ATT or ATE)

use aod_big,clear

 ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) ///

rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///

objpath(C:\Users\sliu002\Desktop\twang\webinar twang) /// plotname(binary_twang_att.pdf)

- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies the R executable by name and path

use aod_big,clear

 ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) ///

rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///

objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///

- plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies folder where outputted data and plots will go

use aod_big,clear

 ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) ///
rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///

objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///

plotname(binary_twang_att.pdf)

- \cdot balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies name of file where diagnostic plots will go

use aod_big,clear

 ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) ///
rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
plotname(binary_twang_att.pdf) Print unweighted

· balance, unweighted weighted

Print unweighted and weighted balance tables in the output window

save subdata_twogrp_att_wgts,replace

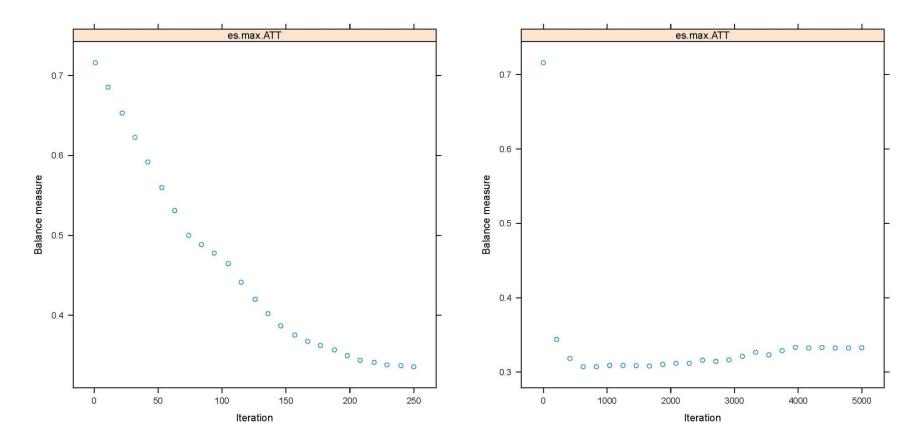
use aod_big,clear

 ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

ntrees(5000) stopmethod(es.max) estimand(ATT) ///

- rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
- objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
- plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies name of outputted dataset with ps weights


Step 3: Evaluate the quality of the ps weights

- Key issues that should be checked:
 - Convergence = did the algorithm run long enough
 - Balance = how well matched the two groups
 look after weighting
 - Overlap = whether there is evidence that the distributions of the pretreatment covariates in the two groups line up well

Step 3: Checking convergence

Bad Convergence

Good Convergence

Step 3: Checking balance

 TWANG has numerous diagnostics for assessing balance

Step 3: Checking balance with tables

Step 3: Checking balance with tables Unweighted balance table

Unweighted

	txmn	txsd	ctmn	ctsd s	stdeffsz	stat	р	ks	kspval
_									
age	15.82	1.088	15.54	1.573	.255	4.59	0	.116	C
bcs	12.26	7.405	9.832	7.776	.328	6.309	0	.177	0
ces	.242	.363	.052	.177	.524	10.81	0	.262	0
eps	.279	.191	.208	.185	.373	7.267	0	.186	0
female	.214	.411	.315	.465	246	-4.666	0	.101	.001
ias	.224	.19	.087	.109	.719	14.73	0	.485	C
imds	7.723	8.234	7.831	8.515	013	253	.8	.03	.874
prmhtx	.449	.498	.367	.482	.164	3.202	.001	.082	.012
sds	3.099	2.332	2.338	2.22	.327	6.382	0	.147	C
sfs	.145	.147	.109	.123	.246	4.889	0	.12	C
sps	7.93	4.454	6.311	4.268	.364	7.1	0	.141	C
race4g									
1	.673	.469	. 51	.5	.349	21.45	0	.163	0
2	.135	.342	.081	.273	.157			.054	C
3	.097	.296	.241	.428	487			.144	C
4	.092	.29	.168	.374	261		•	.076	C
Missingn~s									
bcs	0	0	.002	.049	054	-37.83	0	.002	.297
eps	0	0	.002	.04	044	-32.14	0	.002	.395
ias	0	0	.009	.094	103	-72.54	0	.009	.045
imds	0	0	.002	.04	044	-32.14	0	.002	.395
prmhtx	.002	.047	.007	.083	059	-1.093	.275	.005	.25
race4g	.002	.047	0	0	.048			.002	C
sds	0	0	.004	.06	066	-47.38	0	.004	.201
sps	0	0	.001	.035	038	-27.37	0	.001	.461

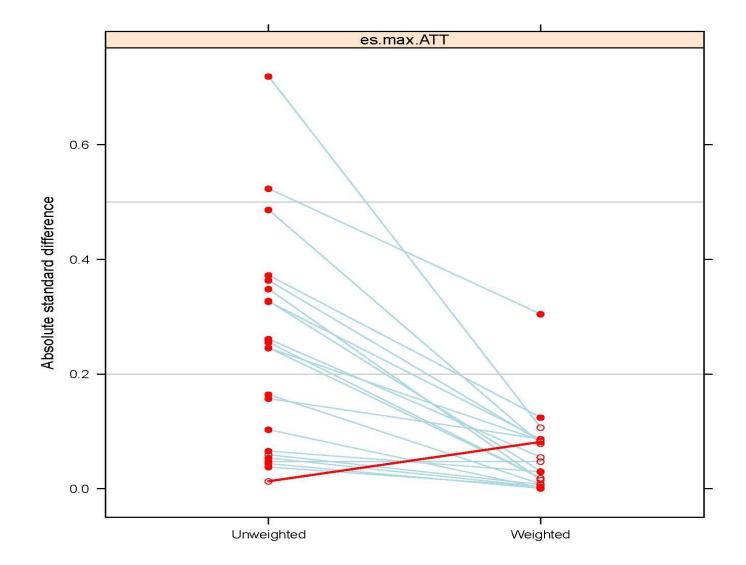
Step 3: Checking balance with tables Unweighted balance table

Unweighted

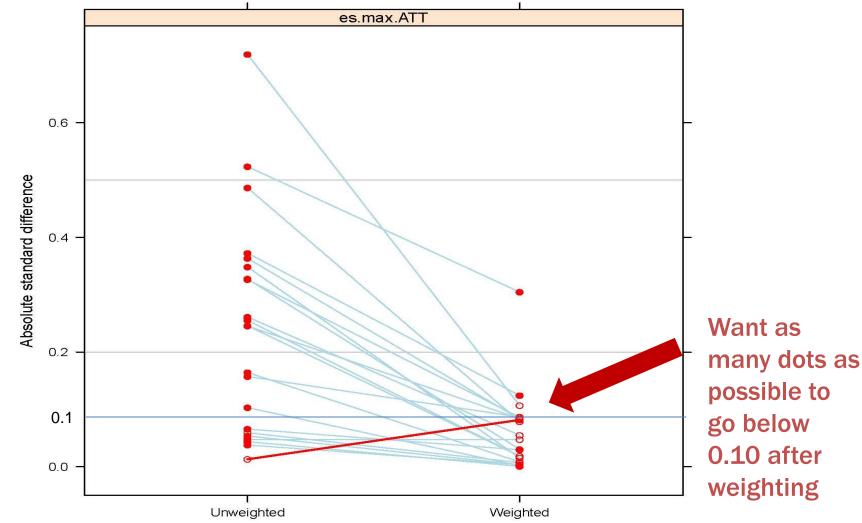
	txmn	txsd	ctmn	ctsd s	tdeffsz	stat	p	ks	kspval
ge	15.82	1.088	15.54	1.573	.255	4.59	0	.116	0
cs	12.26	7.405	9.832	7.776	.328	6.309	0	.177	0
es	.242	.363	.052	.177	.524	10.81	0	.262	0
ps	.279	.191	.208	.185	.373	7.267	0	.186	0
emale	.214	.411	.315	.465	246	-4.666	0	.101	.001
as	.224	.19	.087	.109	.719	14.73	0	.485	0
mds	7.723	8.234	7.831	8.515	013	253	.8	.03	.874
rmhtx	.449	.498	.367	.482	.164	3.202	.001	.082	.012
ds	3.099	2.332	2.338	2.22	.327	6.382	0	.147	0
fs	.145	.147	.109	.123	.246	4.889	0	.12	0
ips -	7.93	4.454	6.311	4.268	.364	7.1	0	.141	0
ace4g									
	. 673	.469	. 51	.5	.349	21.45	0	.163	0
5	.135	.342	.081	.273	.157			.054	0
	.097	.296	.241	.428	487			.144	0
	.092	.29	.168	.374	<mark>261</mark>	•		.076	0
lissingn∼s									
cs	0	0	.002	.049	054	-37.83	0	.002	.297
ps	0	0	.002	.04	044	-32.14	0	.002	.395
as	0	0	.009	.094	103	-72.54	0	.009	.045
mds	0	0	.002	.04	044	-32.14	0	.002	.395
rmhtx	.002	.047	.007	.083	059	-1.093	.275	.005	.25
ace4g	.002	.047	0	0	.048			.002	0
ds	0	0	.004	.06	066	-47.38	0	.004	.201
ps	0	0	.001	.035	038	-27.37	0	.001	.461

Highlights denotes rows with absolute ES > 0.10

Step 3: Checking balance with tables Weighted balance table

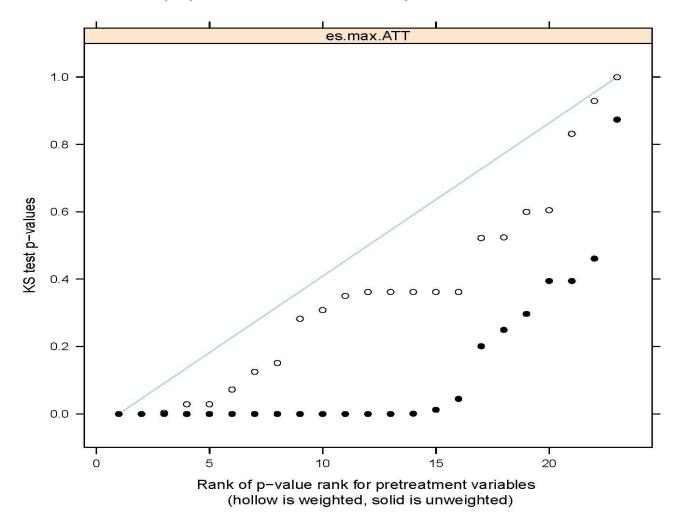

Weighted: esmax

	txmn	txsd	ctmn	ctsd s	tdeffsz	stat	р	ks	kspval
_									
age	15.82	1.088	15.8	1.459	.019	.238	.812	.052	.524
bcs	12.26	7.405	12.48	7.757	03	466	.641	.06	.351
ces	.242	.363	.131	.284	.305	4.32	0	.152	0
eps	.279	.191	.255	.183	.124	2.056	.04	.064	.283
female	.214	.411	.248	.432	084	-1.311	.19	.035	. 929
ias	.224	.19	.203	.169	.107	1.67	.095	.083	.073
imds	7.723	8.234	8.396	8.509	082	-1.262	.207	.062	.308
prmhtx	.449	.498	.453	.498	008	129	.898	.004	1
sds	3.099	2.332	2.898	2.245	.086	1.312	.19	.049	. 6
sfs	.145	.147	.148	.144	019	283	.778	.049	. 605
sps	7.93	4.454	7.561	4.249	.083	1.272	.204	.052	. 522
race4g									
1	. 673	.469	.666	. 472	.016	1.083	.362	.007	.362
2	.135	.342	.105	.307	.087			.03	.362
3	.097	.296	.12	.325	079			.023	.362
4	.092	.29	.108	.311	055			.016	.362
Missingn~s									
bcs	0	0	0	.013	004	-21.96	0	0	.125
eps	0	0	0	.005	001	-30.06	0	0	.029
ias	0	0	0	.012	002	-72.29	0	0	C
imds	0	0	0	.005	001	-30.06	0	0	.029
prmhtx	.002	.047	.003	.053	007	212	.832	.001	.832
race4g	.002	.047	0	0	.048			.002	.362
sds	0	0	.002	.041	03	-42.25	0	.002	.004
sps	0	0	0	.011	004	-20.27	0	0	.151


Highlights denote rows with absolute ES > 0.10

Step 3: Checking balance graphically

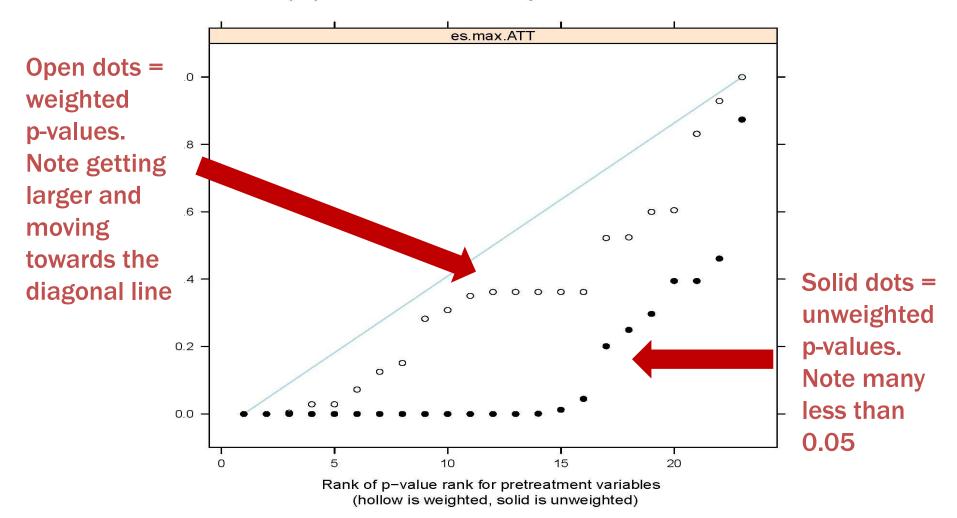
Step 3: Checking balance graphically ES plot



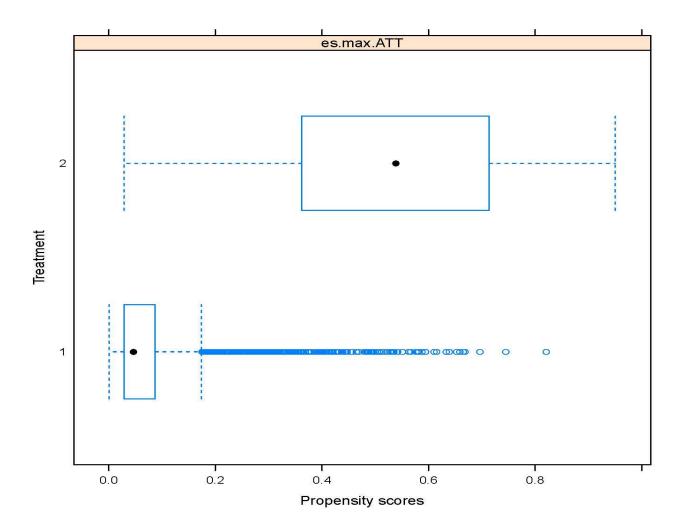
Step 3: Checking balance graphically ES plot

Step 3: Checking balance graphically KS plot

Plot 5 (ks): K-S P-values of Group Distns of Covariates


Step 3: Checking balance graphically KS plot

Plot 5 (ks): K-S P-values of Group Distns of Covariates



Step 3: Checking balance graphically KS plot

Plot 5 (ks): K-S P-values of Group Distns of Covariates

Step 3: Checking overlap

Step 3: Checking overlap

Check for 0 (empty) cells on binary and categorical

	MET/ CBT5	Usual Care
Female	774	95
Race = 1	1254	299
Race = 2	200	60
Race = 3	592	43
Race = 4	412	41
Prior MH trt	897	199

Compare the minimums and maximums

	MET/ CBT5	Usual Care
SFS	(0, 0.71)	(0, 0.65)
SPS	(0, 16)	(0, 16)
SDS	(0, 7)	(0, 7)
IAS	(0, 1)	(0, 1)
CES	(0, 1)	(0, 1)
EPS	(0, 0.98)	(0, 0.99)
IMDS	(0, 41)	(0, 34)
BCS	(0, 31)	(0, 31)

<u>Note</u>: We haven't even begun to talk about the outcome yet

- Steps 1 to 3 do not involve any outcomes
- We first focus on dealing with selection/pre-treatment group differences
- Then, if we do a good job, we will move to outcome analyses

Step 4: Estimate the treatment effect

- Estimate as difference in propensity score weighted means between the two groups of interest
 - Since we are using weights, we need to adjust our standard errors for the weighting
 - Analogous to fitting regression models with survey data with survey weights

Step 4: Estimate the treatment effect

- Estimate as difference in propensity score weighted means between the two groups of interest
 - Since we are using weights, we need to adjust our standard errors for the weighting
 - Analogous to fitting regression models with survey data with survey weights

We can use survey analysis commands in any software to estimate treatment effects

Step 4: Estimate the treatment effect (cont.)

Stata Code:

- use subdata_twogrp_att_wgts,clear
- reg sfs8p12 metcbt5[pweight=esmaxatt]

(sum of wgt is 7.3694e+02)

Linear regression

Number of obs	=	2901
F(1, 2899)	=	4.69
Prob > F	=	0.0304
R-squared	=	0.0049
Root MSE	=	.13845

sfs8p12	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
metcbt5	0198438	.0091637	-2.17	0.030	0378119	0018758
_cons	.1141963	.0066653	17.13	0.000	.1011271	.1272656

Step 4: Estimate the treatment effect (cont.)

Stata Code:

- use subdata_twogrp_att_wgts,clear
- reg sfs8p12 metcbt5[pweight=esmaxatt]

(sum of wgt is 7.3694e+02)

Linear regression

Number of obs	=	2901
F(1, 2899)	=	4.69
Prob > F	=	0.0304
R-squared	=	0.0049
Root MSE	=	.13845

sfs8p12	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
metcbt5	0198438	.0091637	-2.17	0.030	0378119	0018758
_cons	.1141963	.0066653	17.13	0.000	.1011271	.1272656

Results show that youth like those in "usual care" would have fared better had they received MET/CBT5

Comparison with unweighted treatment effect

Stata Code:

- use subdata_twogrp_att_wgts,clear
- reg sfs8p12 metcbt5

Source	SS	df		MS		Number of obs = F(1, 2899) =	
Model Residual	.832622997 41.6553919	1 2899		522997 368883		Prob > F = R-squared = Adj R-squared =	= 0.0000 = 0.0196
Total	42.4880148	2900	.014	465104		Root MSE =	= .11987
sfs8p12	Coef.	Std. 1	Err.	t	P> t	[95% Conf.]	[nterval]
metcbt5 cons	0470548 .1141963	.0061		-7.61 20.07	0.000	0591753 - .1030419	0349343 .1253508

Comparison with unweighted treatment effect

Stata Code:

- use subdata_twogrp_att_wgts,clear
- reg sfs8p12 metcbt5

Source	SS	df		MS		Number of obs F(1, 2899)	= 2901 = 57.95
Model Residual	.832622997 41.6553919	1 2899		522997 368883		Prob > F R-squared	= 0.0000 = 0.0196 = 0.0193
Total	42.4880148	2900	.014	465104		Root MSE	= .11987
sfs8p12	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
metcbt5	0470548	.0061	815	-7.61	0.000	0591753	0349343
_cons	.1141963	.0056	888	20.07	0.000	.1030419	.1253508

- Also shows significant evidence that youth in "usual care" have higher substance use frequency at 12-months than those in MET/CBT5
- Magnitude of the effect unweighted is double (-0.02 vs -0.047)

Step 4: Doubly robust estimation

- "Doubly robust" estimation is the preferred route for estimating causal treatment effects
 - Combines fitting a propensity score weighted regression model with the inclusion of additional pretreatment control covariates
 - As long as one piece is right (either the multivariate outcome model or the propensity score model), obtain consistent treatment effect estimates

Step 4: Doubly robust estimation: Adding in covariates with lingering <u>Stata Code:</u> imbalances

- use subdata_twogrp_att_wgts,clear
- reg sfs8p12 metcbt5 ces [pweight=esmaxatt]

(sum of wgt is 7.3694e+02)

Linear regression

Number	of obs	=	2901
F(2,	2898)	=	2.67
Prob >	F	=	0.0693
R-squar	ed	=	0.0070
Root MS	E	=	.13832

sfs8p12	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
metcbt5	0219624	.0096355	-2.28	0.023	0408555	0030693
ces	0191335	.0161545	-1.18	0.236	050809	.012542
_cons	.118827	.0078169	15.20	0.000	.1034998	.1341542